光通信包括光纤通信和空间通信两种方式。光纤通信是以光纤作为传输信道进行通信,目前整体技术发展情况较为成熟。空间激光通信是以光为载波,自由空间或大气作为传输信道的通信方式,可以建立空空、空地、地地、星地、星间等完整的组网通信系统。
空间光通信结合了无线电通信和光纤通信的优点,具有安全性好、通信速率高、传输速度快、波段选择方便且信息容量大的优点,其终端系统具有体积小、重量轻、功耗低、施工简单、可灵活机动的特点,在军事和民用领域均具有重大的战略需求与应用价值[1,2]。
空间光通信已经在多种链路成功开展了试验,如卫星/地面、卫星/卫星、卫星/飞机、飞机/飞机、空/地(飞艇/地面或飞机/地面)及地面站间[3]。
美国、欧洲、日本、中国和俄罗斯等国家在空间光通信领域进行了多项试验验证(如图1),取得了关键技术突破,推动空间光通信走向实用化。
美国在国家航空航天局(NASA)和空军支持下成为最早开展空间光通信研究的国家。
图4 OPTEL-D终端原理框图
日本已经开展了一系列星地光通信演示验证,工程试验卫星(ETS-VI,1995-1996)计划和光学在轨测试通信卫星(OICETS, 2003/2006)计划都完成了光通信测试,实现了世界首次低轨卫星与移动光学地面站间的光传输[10,11]。日本的研究已经开始向空间光通信终端小型化、轻量化、低功耗方向发展。2018年日本国家信息通信技术研究所(NICT)发射的超小型空间光通信终端VSOTA质量不到1kg[12],且功耗较低,稳定性较好。2020年11月,日本发射数据中继卫星JDRS,进行高轨卫星对低轨卫星的光通信及中继验证,采用差分相移键控(DPSK)通信制式,通信速率为1.8 Gb/s。2021年,日本计划开展HICALI项目,促进下一代激光通信技术研究,并在LEO轨道上验证10Gb/s级光通信[13],如图5所示。
2
国内发展现状
国内开展空间光通信技术的研究起步晚,但是近年来成果显著,哈尔滨工业大学和长春理工大学在通信系统技术和端机研制方面首先取得了重大突破,中科院上海光机所也开展了在轨试验,中国空间技术研究院、武汉大学、电子科技大学、西安光机所等单位在激光通信单元技术领域取得了不少研究成果。
空间光通信关键技术
随着激光、光学和光电子元器件技术的进步,空间光通信技术不断取得突破。按照系统功能划分,主要包括捕获跟踪、通信收发、大气补偿、光机电设计四类技术。
1
捕获跟踪
空间光通信借助光源的小发散角波束提供高功率增益,因此空间光通信对光束的捕获跟踪提出了比微波通信更高的要求。实现快速大概率大范围的光束捕获和稳定高带宽、高精度的光束跟踪是空间光通信研究的核心目标。
2
通信收发
空间光通信要求激光器具有大调制带宽、高发射功率和窄线宽等特点。激光调制技术主要有直接调制和间接调制,由于直接调制方式使带宽和发射功率受限,大多采用小功率种子激光源间接调制后通过高功率光纤放大器获得高发射功率的方法。根据作用光束的强度、频率、相位等参数不同,分为调幅、调频和调相等调制方式,由于不同波长系统相应器件的差异,调制方式也有区别。
另外,激光通信接收机的高速探测器均由光纤耦合,适应高速探测器的小探测截面,有利于系统集成化。因此,空间光到光纤的耦合是激光通信接收部分的关键技术之一,而由于光纤静态角偏差、随机角起伏误差、大气湍流像差等因素使耦合变得十分困难。对光纤高效率耦合主要受模式匹配、对准偏差、菲涅尔反射、吸收损耗、平台振动等影响。目前的研究主要采用光学自适应、锥形光纤、光纤章动等方法,但并未出现实质性的突破,可见,光纤高效耦合技术是空间光通信系统的主要难题之一。
3
大气补偿
当空间光通信应用在星地、空空和空地等链路时,在穿越大气层的过程中,由于大气湍流影响,激光在传输时会出现接收功率抖动,导致系统出现严重误码,而高速光通信更明显[21]。
采用高精度实时波前畸变校正技术是抑制大气湍流对传输光束波前影响的方法,通过哈特曼传感器进行多孔径波面探测,在一定程度能够矫正波前畸变。主要技术难点在于激光到达角起伏补偿、波面变形补偿和空中飞行时附面层影响补偿,通过探测系统引入波前畸变补偿镜技术进行联合校正。
4
光机电设计
减小自由空间的功率损耗,需要提高发射光学系统增益,这就要求通信光束以近衍射极限角发射。在保证发射光学口径的基础上,提高光束发射增益对于光纤耦合技术、光束整形技术、望远镜面型设计提出了严格要求。为突破近衍射极限角发射的关键技术、发射激光源的整形准直技术和高效率光纤耦合技术,需要研究光纤不同芯径、束散角与光学系统匹配的优化选取方法,均依赖激光技术的发展。
空间光通信四大发展趋势
空间光通信技术近年来飞速发展,许多技术难题逐步被攻克。例如,快速高精度指向、捕获、跟踪(PAT)技术,大气湍流效应抑制及补偿技术,窄线宽大功率激光发射技术、低噪声光放大技术和高灵敏度DPSK/BPSK/QPSK光接收技术等。这些技术难题的攻克,为实现星际激光通信奠定了基础。纵观空间光通信技术领域的发展,呈现以下趋势:
1)高速率
近年来,空间光通信的迅速发展主要表现在速率方面。随着空间光通信高速调制解调和传输技术的快速发展,未来星地速率有望达到100 Gb/s量级。高速光通信采用高阶调制方式(QPSK、QAM)和复用方式(WDM、TDM、OAM),短距离(<1 km)速率可达Tb/s量级。
2)网络化
随着全球化和信息技术的发展,亟需突破可以不依托地面网络、无缝覆盖全球、高带宽和抗毁性能的空间网络,并要求其有适应多样性业务的能力。因此,依赖空间光通信技术实现的天基宽带传送网络是必然发展趋势,如图8。空间光通信技术逐渐从“点对点”模式向中继转发和构建激光网络的方向发展。长春理工大学提出采用旋转抛物面结构设计“一点对多点”光学收发天线,实现多颗卫星间激光通信组网[23],是探索解决“一对多”激光通信技术难题的重大进展。
图8天基宽带传送网络示意图
3)多用途
随着空间光通信技术的逐渐成熟,空间光通信调制速率高、传输距离远和能耗低的优点逐渐凸显,已广泛用于星间、星空、空空、空地等链路的宽带数据传输,并逐渐向深空、水下和地面接入通信扩展。如深空探测、探月工程、水下无线光通信等拓展了人类生存空间,是世界大国争相发展的技术。
4)一体化
由于激光在高速通信和精密测距具有一定的优势,近年来激光测距与通信一体化技术越来越受到重视。一体化设计以高速通信为主,兼顾精密测距,使用同一束激光和硬件平台实现测距和信息传输,进而实现同一套设备完成测距和通信双重功能。2021年,长春理工大学提出了一种对空间碎片进行探测与信息传输的新方案[24],将激光测距、光谱偏振成像、激光通信三种功能融为一体,如图9。
另外,为兼顾通信系统的可靠性与大带宽,光波通信与微波通信将长期共存、互为备份。光波和微波通信技术的融合,也是目前学术研究的热点,主要包括光波与微波收发融合、数据处理融合、微波信号的光学调制和产生等。逐渐发展成熟的微波光子技术,已经开始应用于雷达信号的激光传输和处理,未来在光波与微波融合通信系统中也将获得重要应用。
5)多谱段
随着多种光谱段激光技术的进步,从紫外到红外,甚至太赫兹波段,均已出现能够实用的激光技术。由于各谱段在抗电磁干扰、云雾穿透能力、自组网等方面均有一定的优势,因此,利用不同谱段通信系统的优势,未来空间光通信将大力发展紫外、可见、中红外、太赫兹等多谱段结合的通信模式。
THz无线光通信方面,2021年中国工程物理研究院微系统与太赫兹研究中心(简称中物院微太中心)首次开展了220 GHz频段机载高速通信动态技术验证[26],突破了高功率源、低噪声接收、高精度动态跟瞄、高速信号调制解调等关键技术,获得了220GHz频段不同高度、公里级距离下的大气传输特性试验数据,完成了高清视频业务连续可靠传输。同时通过动态等效验证,具备了单路单载波20 Gb/s高速通信能力。
结束语
1)加强基础研究,突破重点核心技术;
2)积极组织元器件关键技术攻关和成果转化,努力实现核心元器件自主知识产权;
3)积极参与国际标准制定,促进我国空间光通信技术和产业化的发展;
4)引导和促进相关产业健康发展。